Key-Escrow-less M-Pin

Michael Scott

MIRACL Labs

mike.scott@miracl.com

Abstract. We have been tasked to harden the M-Pin protocol against
a “key-escrow” attacker, who has the authority to demand and be is-
sued with all of the secrets from all of the distributed trust authorities
(D-TAs) and the M-Pin server, and use them to try to create valid cre-
dentials in the identities of valid clients in order to impersonate them and
gain access to their accounts on a remote server via the normal M-Pin au-
thentication process. As a purely identity-based protocol M-Pin is open
to this kind of attack. Our recommended response is to use ideas from so-
called Certificateless cryptography, which is a standard and established
response to the key-escrow property of pure identity-based schemes.

1 Introduction

The reader should refer to the original M-Pin literature for definitions. M-Pin
is a multi-factor client-server authentication protocol, using identity based cryp-
tography.

Many in the cryptographic community have a visceral and negative response
to any cryptographic protocol that admits to the key-escrow property, whereby
a single component of the system may recreate the keys of any or all users. That
component may subsequently be coerced by law enforcement or other agencies
to co-operate and give up those keys. For many people only a system whereby
each user generates their own secret and does not ever expose it to any external
third party, is acceptable.

In M-Pin, as in other identity based systems, the single component at risk is
the TA (Trusted Authority). Our solution to the key-escrow issue has been to
distribute this functionality to at least three D-TAs (Distributed Trust Author-
ities). The intention is that the three D-TAs are under separate organisational
and jurisdictional control.

From a practical point of view this is probably a completely satisfactory
solution. Neverthess for some critics it is not enough. Understandable, since a
TA compromise, like a PKI root key compromise, is particularly insidious as
it applies no matter how careful clients and servers are about their personal
security. The purpose of this note is to suggest ways in which M-Pin might be
made key-escrow-immune.

The standard way to do this is to become no longer purely identity based.
The client now has, as well as their identity, a public/private key pair. But
fortunately using the “certificateless cryptography” paradigm [1], as suggested



by the name, this can be done without having to resort to a PKI (Public Key
Infrastructure).

2 The Patch

Original M-Pin looks like this. Recall that @ is a fixed point in the group G2, s
is the combined master secret of the D-TAs, (s — a)A is the client “token” and
« is their PIN.

Alice - identity 1D, Server
Generates random 0 < z < ¢ Generates random 0 < y < ¢
A=H(ID,)
U==zA
ID,, U —
<y

V=—(+y)((s-a)A+ad) —
A=H(ID,)
g=e(V,Q).e(U +yA,sQ)

if g # 1, reject the connection

Table 1. M-Pin

Our suggested patch to fix the key-escrow issue is shown in Table 2. In line
with the certificateless approach, there will be a single private key (as before),
for each client an identity hashed, say for Alice, to a point A (as before), and a
new public key associated with Alice P4. As before the client accepts from the
D-TAs the client secret shares and combines them to create sA (now called a
partial client secret), but now it multiplies it by a randomly generated value z
to get the new full client secret zsA. The server behaves in a similar fashion,
combining its secret shares to create s@, and again multiplying it by a randomly
generated value w to get the full server secret ws@. It also calculates a public
key w@.

The full client secret can be split up into multiple factors exactly as before.
The client then accesses the server public key and calculates its own new public
key as P4 = z~'wQ and conveys this to the server for safe keeping. Now only a
client who can reconstruct from its multiple factors the value zsA, can authen-
ticate to a server who is in possession of the associated public key P4 and the
full server secret ws@. After creating the full private key and the public key the
client should delete z, and similarly the server should delete w.



Now Al Riyami and Paterson [1] warn us that “Of course, we must assume
that the (D-TAs) do not mount an attack of this type: armed with the partial
private key and the ability to replace public keys, the (D-TAs) could impersonate
any entity in generating a private/public key pair and then making the public key
available.” Our sole new security concern then is to ensure that the new public
key is beyond the reach of those in control of the D-TAs, meaning that they
cannot substitute this public key with another, with a view to impersonating a
client by generating a new set of keys for the impersonator, and substituting the
impersonator’s public key for that of the original client.

Alice - identity 1D, Server
Generates random 0 < z < ¢ Generates random 0 < y < q
A= H(ID,)
U==zA
ID.,, U —
<y
V=—(z+y)((sz—a)A+aA) — Retrieve Client Public Key Pa
A= H(ID,)
9=V, Pa).e(U + yA, wsQ)
if g # 1, reject the connection

Table 2. Key-Escrow-less M-Pin

The proposed patch does not affect the D-TAs in any way, or the client
enrollment with the D-TAs. It requires a minimal modification to the client and
server sides of the protocol, and comes at little extra computational cost. Since
the D-TAs do not know z or w, they cannot be coerced into revealing the full
client private key zsA or the full server secret ws@). There are no extra secrets
to be protected on either the client or server side. The use of Time Permits
complicates things, but with a bit more work on the server side they can be
incorporated into this new regime.

We emphasise that the public key P4 as created by Alice at the time of her
enrollment must be used by the server in all subsequent authentications by Alice.

However, as always in cryptography, its not so simple! This new client public
key must be handled correctly, and must be available to the server in its original
form whenever that client attempts to authenticate. The standard way would
be for the public keys to be placed in a public directory. Or the server might
maintain a FIDO-like list of identities and their associated public keys. Recall
that we must avoid a public-key-substitution attack, where an impersonator



generates their own private key and gets the server to accept the associated
public key in place of the original.

3 Server Enrollment

It would appear that the client, following its enrollment via the D-TAs, now needs
to complete its enrollment directly with the server. Assume that the server has
already generated a random w, constructed its full secret ws@ and its public key
w(@, and deleted w. Here we sketch a simple enrollment process.

1. The client authenticates to the server using regular M-Pin, but without using
its multi-factor feature, or requiring a time permit.

2. The server checks that an account in this client identity does not already
exist. If there is an existing account the server drops the link.

3. The server creates a new database entry and initialises a new account for
the client, and sends the client its public key wQ@.

4. The client generates random z and calculates 2 'w(@ and returns this (its
public key) to the server.

5. The server stores the client public key in the newly created client account
database, and drops the link.

6. The client generates their full private key zsA, deletes z, chooses their PIN
number, and splits the full private key into token and PIN.

On subsequent authentications the server retrieves the client public key from
the client database after the first step in the protocol as shown in Table 2. It
is assumed that a Key-Escrow attacker, for all of its powers, does not have the
ability to directly access the client database (otherwise they could completely
bypass the authentication process, avoiding the need to extract the secret keys
of any entity).

In fact the all-powerful Key-Escrow attacker who demands and is given all
of the secrets of all parties (that is all of the D-TA and server secrets, and read
access to client public keys), lacking only the secret possessed by a targeted
client, is still unable to authenticate via the normal process in the identity of
that client.

However unsurprisingly such an attacker can do a lot of damage: They can
for example set up a false server, launch phishing attacks, and reduce the client
protection by one low-entropy factor. For example in the standard two-factor
setting if they capture a client token they can try every PIN against the false
server until the right one is found. The same known issue arises with standard
M-Pin if the server secret is lost.

4 Time Permits

As mentioned above using the method described causes a problem with time
permits. To continue using them as before, they would have to be multiplied



by z by the client before use to ensure the mathematics still worked correctly.
However for security reasons the client has already deleted z. The answer is for
the client to forward their time permit sT' directly to the server, and not to
add it into the value V' as is currently done. Recall that since Time Permits
are broadcast by the D-TAs and do not need any cryptographic protection,
they could in theory already be picked up directly by the server. However we
suggest that the Time Permit should continue to be picked up by the client.
and simply forwarded to the server as part of the authentication process. The
verification equation for the server then becomes the slightly more elaborate
test that e(V, Pa).e(sT, wQ).e(U + y(A + T),wsQ) = 1. This requires a triple
pairing calculation, which will cost just a little more (I would guess 20%) than
the current double pairing calculation.

5 Discussion

It is worth briefly revisiting the necessity for all this. In a scenario where an
external agency can seize or otherwise force the cooperation of all of the D-TAs,
it is hard to imagine a scenario where these counter-measures would practically
improve security. For example why should such an agency not just seize the
client database directly from behind the server and access client data directly,
completely bypassing the authentication mechanism? An objection might be that
while the D-TAs are all in a jurisdiction under the control of the external agency,
the server may be in a different jurisdiction. But we already defend against this
eventuality by ensuring that one D-TA is under the control of the same entity
that controls the server, and which is presumably in the same jurisidiction as
the server. Indeed we could place a D-TA right next to the server, even running
as a seperate thread on another core of the same processor!

Observe that the attack model we are defending against may not be very
realistic. It assumes that the server hands over its secrets but does not co-operate
beyond that. In particular the client database cannot be accessed directly by
the attacker - they are allowed only to go through a normal authentication
process while attempting to impersonate a client. In our opinion that is a little
artificial. As an aside, if I were an owner of an M-Pin server, and if approached
by a Key-Escrow authority and asked for my keys, I would rather cut a deal
before compromising all of my clients: I would volunteer to put in a patch that
allowed access to certain named accounts from certain named IP addresses that
completely bypassed the authentication check.

One other issue worth mentioning. Until now an M-Pin signature has not had
the property of being non-repudiatable. A client could always claim in a court
of law that their supposed signature was forged by a conspiracy of the D-TAs.
However using the method described above this would no longer be the case, and
such signatures would be non-repudiatable, just like PKI signatures. Of course
this would only be true in a narrow cryptographic sense, it is a matter of law to
determine the validity or otherwise of a particular type of digital signature.



The other downside of M-Pin signatures, that only the server in possession
of the full server secret can verify them, remains.

6 Conclusion

Note that this proposal applies only to M-Pin and its variants.

References

1. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. Cryptology
ePrint Archive, Report 2003/126, 2003. http://eprint.iacr.org/2003/126.



